首页> 外文OA文献 >Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition
【2h】

Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition

机译:使用主成分分析和模式识别的飞机机翼比例模型中基于振动的损伤检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study deals with vibration-based fault detection in structures and suggests a viable methodology based on principal component analysis (PCA) and a simple pattern recognition (PR) method. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data. A PR procedure based on the nearest neighbour principle is applied to recognise between the categories of the damaged and the healthy wing data. A modified PCA method is suggested here, which not only reduces the dimensionality of the FRFs but in addition makes the PCA transformed data from the two categories more differentiable. It is applied to selected frequency bands of FRFs which permits the reduction of the PCA transformed FRFs to two new variables, which are used as damage features. In this study, the methodology is developed and demonstrated using the vibration response of a scaled aircraft wing simulated by a finite element (FE) model. The suggested damage detection methodology is based purely on the analysis of the vibration response of the structure. This makes it quite generic and permits its potential development and application for measured vibration data from real aircraft wings as well as for other real and complex structures.
机译:这项研究涉及结构中基于振动的故障检测,并提出了一种基于主成分分析(PCA)和简单模式识别(PR)方法的可行方法。健康和受损结构的频率响应函数(FRF)用作初始数据。应用基于最近邻原理的PR程序来识别受损和健康机翼数据的类别。本文提出了一种改进的PCA方法,该方法不仅降低了FRF的维数,而且使来自这两种类别的PCA转换数据更具可区分性。它应用于FRF的选定频带,从而允许将PCA转换的FRF减少为两个新变量,这些变量用作损坏特征。在这项研究中,该方法是使用有限元(FE)模型模拟​​的缩放飞机机翼的振动响应进行开发和演示的。建议的损坏检测方法仅基于结构振动响应的分析。这使其非常通用,并允许其潜在的开发和应用,以测量来自真实飞机机翼以及其他真实和复杂结构的振动数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号